This library contains some 100+ publications that we consider to be relevant for research on the thorium isomer transition. Entries are sorted by categories, where each publication is listed only once (although it might belong into multiple categories). Most recent papers appear first, papers that appeared later than 2015 (the start of the nuClock project) can be found in the “Publications” section. If you find that your most favorite paper is not listed, please drop me a line.

Nuclear clocks based on resonant excitation of gamma-transitions

E. Peik and M. Okhapkin
arXiv:1502.07322 and Comptes Rendus Physique 16, 5 (2015)

Prospects for a Nuclear Optical Frequency Standard based on Thorium-229

E. Peik, K. Zimmermann, M. Okhapin, and Chr. Tamm
arXiv:0812.3548 (2008)

Properties of the optical transition in the 229Th nucleus

E. V. Tkalya
Physics Uspekhi 46, 315-324 (2003)

Lasers as a bridge between atomic and nuclear physics

S. Matinyan
Phys. Rep. 298, 199-249 (1998)

Hyperfine Structure in Th229g3+ as a Probe of the Th229g→Th229m Nuclear Excitation Energy

K. Beloy
Phys. Rev. Lett. 112, 062503 (2014)

Magnetic dipole and electric quadrupole moments of the 229Th nucleus

M. S. Safronova, U. I. Safronova, A. G. Radnaev, C. J. Campbell, and A. Kuzmich
Phys. Rev. A 88, 060501(R) (2013)

On the Energy of the 3.5-eV Level in 229Th

S. L. Sakharov
Physics of Atomic Nuclei 73, 1 (2010)

Nuclear structure of lowest Th229 states and time-dependent fundamental constants

E. Litvinova, H. Feldmeier, J. Dobaczewski, and V. Flambaum
Phys. Rev. C 79, 064303 (2009)

Energy of the 3/2+ state of Th229 reexamined

Z.O. Guimarães-Filho, and O. Helene
Phys. Rev. C 71, 044303 (2005)

Matrix element of the anomalously low-energy (3.5 +/-0.5) eV transition in 229Th and the isomer lifetime

A. M. Dykhne and E. V. Tkalya
JETP 67, 251 (1998)

Processes of the nuclear isomer 229mTh(3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons

E. V. Tkalya, V. O. Varlamov, V. V. Lomonosov, and S. A. Nikulin
Phys. Scr. 53, 296-299 (1996)

Constraining the Evolution of the Fundamental Constants with a Solid-State Optical Frequency Based on the 229Th Nucleus

G. Rellergert, D. DeMille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson
Phys. Rev. Lett. 104, 200802 (2010)

Proposed Experimental Method to determine α Sensitivity of Splitting between Ground and 7.6 eV Isomeric States in 229-Th

J. C. Berengut, V. A. Dzuba, V. V. Flambaum, and S. G. Porsev
Europhys. Lett. 85, 50 005 (2009)

Splitting sensitivity of the ground and 7.6 eV isomeric states of 229Th

A. C. Hayes, J. L. Friar, and P. Möller
Phys. Rev. C 78, 024311 (2008)

Temporal variation of the fine structure constant and the strong interaction parameter in the 229-Th transition

X.-T. He and Z.-Z. Ren
Nucl. Phys. A 806, 117 (2008)

Sensitivity of nuclear transition frequencies to temporal variation of the fine structure constant or the strong interaction

A. C. Hayes and J. L. Friar
Phys. Lett. B 650, 229 (2007)

Enhanced Effect of Temporal Variation of the Fine Structure Constant and the Strong Interaction in 229-Th

V. V. Flambaum
Phys. Rev. Lett. 97, 092502 (2006)

The fundamental constants and their variation: observational and theoretical status

J. P. Uzan
Rev. Mod. Phys. 75, 403 (2003)
There is also a similar long review by J. P. Uzan that appeared in 2011 and briefly mentions 229Th, in particular discrepancies in the works listed above.

Radiative emission of neutrino pair from nucleus and inner core electrons in heavy atoms

M. Yoshimura and N. Sasao
Phys. Rev. D 89, 053013 (2014)
This paper is accompanied by two more recent publications, Phys. Rev. D 90, 013022 (2015) and Phys. Rev. D 91, 063516 (2014), which provide further details.

Quantum interference effects in an ensemble of 229Th nuclei interacting with coherent light

S. Das, A. Palffy, and C.H. Keitel
Phys. Rev. C 88, 024601 (2013)

Coherence-Enhanced Optical Determination of the 229Th Isomeric Transition

W.-T. Liao, S. Das, C. H. Keitel, and A. Pálffy
Phys. Rev. Lett. 109, 262502 (2012)

Proposal for a Nuclear Gamma-Ray Laser of Optical Range

E.V. Tkalya
Phys. Rev. Lett. 106, 162501 (2011)

Nuclear Quantum Optics with X-Ray Laser Pulses

T. J. Bürvenich, J. Evers, and C. H. Keitel
Phys. Rev. Lett. 96, 142501 (2006)

229mTh (3/2+, 3.5 eV) and a check of the exponentiality of the decay law

A. M. Dykhne and E. V. Tkalya
JETP 67, 549 (1998)

Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place

C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko
Phys. Rev. Lett. 108, 120802 (2012)

Nuclear laser spectroscopy of the 3.5 eV transition in Th-229

E. Peik and Chr. Tamm
Europhys. Lett. 61, 181 (2003)

Systematic evaluation of an atomic clock at 2 x 10-18 total uncertainty

T.L. Nicholson, S.L. Campbell, R.B. Hutson, G.E. Marti, B.J. Bloom, R.L. McNally, W. Zhang, M.D. Barrett, M.S. Safronova, G.F. Strouse, W.L. Tew, and J. Ye
Nat. Commun. 6, 6896 (2015)

Optical atomic clocks

N. Poli, C. W. Oates, P. Gill and G. M. Tino
arXiv:1401.2378 (2014)
The original paper is kind of hard to find: Riv. Nuovo Cim. 36, 555-624 (2013).

Optical atomic clocks

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt
Rev. Mod. Phys. 87, 637 (2015)

Prospects for measuring the 229Th isomer energy using a metallic magnetic microcalorimeter

G. A. Kazakov, V. Schauer, J. Schwestka, S. Stellmer, J. H. Sterba, A. Fleischmann, L. Gastaldo, A. Pabinger, C. Enss, and T. Schumm
Nucl. Instr. Meth. Phys. Res. A, 735, 229 (2014) and arXiv:1306.3069.

Improved Value for the Energy Splitting of the Ground-State Doublet in the Nucleus 229mTh

B. R. Beck, C.Y. Wu, P. Beiersdorfer, G. V. Brown, J. A. Becker, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley
LLNLPROC-415170 (2009)

Energy Splitting of the Ground-State Doublet in the Nucleus 229-Th

B. R. Beck, J. A. Becker, P. Beiersdorfer, G.V. Brown, K. J. Moody, J. B. Wilhelmy, C. A. Kilbourne, and R. L. Kelley
Phys. Rev. Lett. 98, 142501 (2007)

Nuclear structure of 229-Th

E. Ruchowska et al.
Phys. Rev. C 73, 044326 (2006)

Nuclear structure of 229Th from γ-ray spectroscopy study of 233U α-particle decay

V. Barci, G. Ardisson, G. Barci-Funel, B. Weiss, O. El Samad, and R. K. Sheline
Phys. Rev. C 68, 034329 (2003)

The nuclear structure of 229Th

K. Gulda et al., ISOLDE collaboration
Nucl. Phys. A 703, 45 (2002)

An excited state of 229Th at 3.5 eV

R. G. Helmer and C. W. Reich
Phys. Rev. C 49, 1845 (1994)

Energy separation of the doublet of intrinsic states at the ground state of 229Th

C. W. Reich and R. G. Helmer
Phys. Rev. Lett. 64, 271 (1990)

The decay of 233U

M. J. Canty, R. D. Connor, D. A. Dohan, and B. Pople
J. Phys. G: Nucl. Phys. 3 (3), 421 (1977)

Features of the low-energy level scheme of 229Th as observed in the a-decay of 233U

L. A. Kroger and C.W. Reich
Nuclear Physics A 259, 29 (1976)

Half-life estimation of the first excited state of 229Th by using a-particle spectrometry

H. Kikunaga, Y. Kasamatsu, H. Haba, T. Mitsugashira, M. Hara, K. Takamiya, T. Ohtsuki, A. Yokoyama, T. Nakanishi, and A. Shinohara
Phys. Rev. C 80, 034315 (2009)

Search for a “3.5-eV isomer” in 229-Th in a hollow-cathode electric discharge

T. T. Inamura and H. Haba
Hyperfine Interactions 171, 197 (2006)

Search for α-decay of 229mTh produced from 229Ac β-decay following 232Th(γ, p2n) reaction

H. Kikunaga, Y. Kasamatsu, K. Takamiya, T. Mitsugashira, M. Hara, T. Ohtsuki, H. Yuki, A. Shinohara, S. Shibata, N. Kinoshita, A. Yokoyama, T. Nakanishi
Radiochimica Acta 93, 507 (2005) and here

Pumping 229mTh by Hollow-Cathode Discharge

T. T. Inamura, T. Mitsugashira, and the Oarai Collaboration
Hyperfine Interactions 162, 115 (2005)

Alpha-decay from the 3.5 eV isomer of 229Th

T. Mitsugashira, M. Hara, T. Ohtsuki, H. Yuki, K. Takamiya, Y. Kasamatsu, A. Shinohara, H. Kikunaga, and T. Nakanishi
Journal of Radioanalytical and Nuclear Chemistry 255, 63 (2003)

Search for the decay of 229mTh by photon detection

Y. Kasamatsu, H. Kikunaga, K. Takamiya, T. Mitsugashira, T. Nakanishi, Y. Ohkubo, T. Ohtsuki, W. Sato, and A. Shinohara
Radiochim. Acta 93, 511 (2005) and here

Search for a low-lying 3.5-eV isomeric state in 229Th

I.D. Moore, I. Ahmad, K. Bailey, D. L. Bowers, Z.-T. Lu, T. P. O’Connor, and Z. Yin
Argonne Physics Division Report PHY-10990-ME-2004 (2004)

Search for decay of the 3.5-eV level in 229-Th

E. Browne, E. B. Norman, R. D. Canaan, D. C. Glasgow, J. M. Keller, and J. P. Young
Phys. Rev. C 64, 014311 (2001)

Reexamination of the Optical Gamma Ray Decay in 229-Th

S. B. Utter, P. Beiersdorfer, A. Barned, R. W. Lougheed, J. R. Crespo Lopez-Urrutia, J. A. Becker, and M. S. Weiss
Phys. Rev. Lett. 82, 505 (1999)

Spontaneous Ultraviolet Emission from 233Uranium/229Thorium Samples

R. W. Shaw, J. P. Young, S. P. Cooper, and O. F. Webb
Phys. Rev. Lett. 82, 1109 (1999)

Ultraviolet Photon Emission Observed in the Search for the Decay of the 229Th Isomer

D. S. Richardson, D. M. Benton, D. E. Evans, J. A. R. Griffith, and G. Tungate
Phys. Rev. Lett. 80, 3206 (1998)

Observation of Electromagnetic Radiation from Deexcitation of the 229-Th Isomer

G. M. Irwin and K. H. Kim
Phys. Rev. Lett. 79, 990 (1997)

The search for the existence of 229mTh at IGISOL

V. Sonnenschein, I. D. Moore, S. Raeder, A. Hakimi, A. Popov, and K. Wendt
Eur. Phys. J. A 48: 52 (2012)

Determination of the ground-state hyperfine structure in neutral 229Th

V. Sonnenschein, S. Raeder, A. Hakimi, I.D. Moore, and K. Wendt
J. Phys. B: At. Mol. Opt. Phys. 44, 165005 (2012)

Resonance ionization spectroscopy of thorium isotopes – towards a laser spectroscopic identification of the low-lying 7.6 eV isomer of 229Th

S. Raeder, V. Sonnenschein, T. Gottwald, I.D. Moore, M. Reponen, S. Rothe, N. Trautmann, and K. Wendt
J. Phys. B: At. Mol. Opt. Phys. 44, 165005 (2011)

Determination of the half-life of the ground state of 229Th by using 232U and 233U decay series

H. Kikunaga, T. Suzuki, M. Nomura, T. Mitsugashira, and A. Shinohara
Phys. Rev. C 84, 014316 (2011)

Nuclear structure of 229,231Th studied with the 230,232Th (d, t) reactions

D. G. Burke, P. E. Garrett, T. Qu, and R. A. Naumann
Nucl. Phys. A 809, 129 (2008)

Additional evidence for the proposed excited state at 5 eV in 229Th

D. G. Burke, P. E. Garrett, T. Qu, and R. A. Naumann
Phys. Rev. C 42, R499 (1990)

Nuclear radii of thorium isotopes from laser spectroscopy of stored ions

W. Kälber, J. Rink, K. Bekk, W. Faubel, S. Göring, G. Meisel, H. Rebel, and R. C. Thompson
Z. Phys. A 334, 103-108 (1989)

Coulomb excitation of states in 229Th

C. E. Bemis, F. K. McGowan, J. L. C. Ford, Jr., W. T. Milner, R. L. Robinson, P. H. Stelson, G. A. Leander, and C. W. Reich
Phys. Scr. 38, 657-663 (1988)

Radioluminescence and photoluminescence of Th:CaF2 crystals

Simon Stellmer, Matthias Schreitl, and Thorsten Schumm
arXiv:1506.01938 (2015)

229Thorium-doped calcium fluoride for nuclear laser spectroscopy

P. Dessovic, P. Mohn, R. A. Jackson, G. Winkler, M. Schreitl, G. Kazakov, and T. Schumm
J. Phys.: Condens. Matter 26, 105402 (2014)

Optical spectroscopy of an atomic nucleus: Progress toward direct observation of the 229Th isomer transition

M. P. Hehlen, R. R. Greco, W. G. Rellergert, S. T. Sullivan, D. DeMille, R. A. Jackson, E. R. Hudson, and J. R. Torgerson
Journal of Luminescence 133, 91 (2013)

Performance of a 229-Thorium solid-state nuclear clock

G. A. Kazakov, A. N. Litvinov, V. I. Romanenko, L. P. Yatsenko, A. V. Romanenko, M. Schreitl, G. Winkler, and T. Schumm
arXiv:1204.3268 and New J. Phys. 14, 083019 (2012)

Progress towards fabrication of Th:229-doped high energy band-gap crystals for use as a solid-state optical frequency reference

W. G. Rellergert, S. T. Sullivan, D. DeMille, R. R. Greco, M. P. Hehlen, R. A. Jackson, J. R. Torgerson, and E. R. Hudson
arXiv:1011.0769 (2011)

Optical transition of the 229Th nucleus in a Solid-state environment

W. G. Rellergert, D. DeMille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson
arXiv:0905.2230 (2009)

Computer modelling of thorium doping in LiCaAlF6 and LiSrAlF6: application to the development of solid state optical frequency devices

R. A. Jackson, J. B. Amaral, M. E. G. Valerio, D. P. DeMille and E. R. Hudson
J. Phys.: Condens. Matter 21, 325403 (2009)

Observation of an unexpected negative isotope shift in 229Th+ and its theoretical explanation

M.V. Okhapkin, D.M. Meier, E. Peik, M.S. Safronova, M.G. Kozlov, and S.G. Porsev
Phys. Rev. A 92, 020503 (2015)

Energy levels of Th+ between 7.3 and 8.3 eV

O. A. Herrera-Sancho, N. Nemitz, M. V. Okhapkin, and E. Peik
Phys. Rev. A 88, 012512 (2013)

Generation of thorium ions by laser ablation and inductively coupled plasma techniques for optical nuclear spectroscopy

V.I. Troyan, P.V. Borisyuk, R.R. Khalitov, A.V. Krasavin, Yu.Yu. Lebedinskii, V.G. Palchikov, S.S. Poteshin, A.A. Sysoev, and V.P. Yakovlev
Las. Phys. Lett. 10, 105301 (2013)

Laser ablation loading of a radiofrequency ion trap

K. Zimmermann, M. V. Okhapkin, O. A. Herrera Sancho, and E. Peik
Appl. Phys. B 107, 883 (2012)

Observation of the 717-nm electric quadrupole transition in triply charged thorium

A. G. Radnaev, C. J. Campbell, and A. Kuzmich
Phys. Rev. A 86, 060501(R) (2012)

Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line

O. A. Herrera-Sancho, M. V. Okhapkin, K. Zimmermann, Chr. Tamm, E. Peik, A. V. Taichenachev, V. I. Yudin, and P. Głowacki
Phys. Rev. A 85, 033402 (2012)

Wigner Crystals of 229Th for Optical Excitation of the Nuclear Isomer

C. J. Campbell, A. G. Radnaev, and A. Kuzmich
Phys. Rev. Lett. 106, 223001 (2011)

Multiply Charged Thorium Crystals for Nuclear Laser Spectroscopy

C. J. Campbell, A. V. Steele, L. R. Churchill, M. V. DePalatis, D. E. Naylor, D. N. Matsukevich, A. Kuzmich, and M. S. Chapman
Phys. Rev. Lett. 102, 233004 (2009)

Excitation of the isomeric 229mTh nuclear state via an electronic bridge process in 229Th+

S. G. Porsev, V. V. Flambaum, E. Peik, and Chr. Tamm
Phys. Rev. Lett. 105, 182501 (2010)

Electronic bridge process in Th229+

S. G. Porsev and V. V. Flambaum
Phys. Rev. A 81, 042516 (2010)

Lasers as a bridge between atomic and nuclear physics

S. Matinyan
Physics Reports 298,199 (1998)

Nuclear Deexcitation via the Electronic-Bridge Mechanism

D. Kekez, A. Ljubičić, K. Pisk, and B. A. Logan
Phys. Rev. Lett. 55, 1366 (1985)

Band structure and decay channels of thorium-229 low-lying isomeric state for ensemble of thorium atoms adsorbed on calcium fluoride

P. V. Borisyuk, O. S. Vasilyev, A. V. Krasavin, Y. Y. Lebedinskii, V. I. Troyan, and E. V. Tkalya
arXiv:1506.06236 (2015)

Impact of the electron environment on the lifetime of the 229mTh low-lying isomer

F. F. Karpeshin and M. B. Trzhaskovskaya
Phys. Rev. C 76, 054313 (2007)

Resonance conversion as a dominant decay mode for the 3.5-eV isomer in 229mTh

F. F. Karpeshin and M. B. Trzhaskovskaya
Physics of Atomic Nuclei 69, 4, 571 (2006)

Spontaneous emission probability for M1 transition in a dielectric medium: 229mTh (3/2+, 3.5 ± 1.0 eV) decay

E. Tkalya
JETP Lett. 71, 311-313 (2000)

Decay of the low-energy isomer 229mTh (3/2+, 3.5±1.0eV) in solids (dielectrics and metals): A new scheme of experimental research

E. V. Tkalya, A. N. Zherikhin, and V. I. Zhudov,
Phys. Rev. C 61, 064308 (2000)

Nonradiative decay of the low-lying nuclear isomer 229m Th(3.5 eV) in a metal

E. V. Tkalya
JETP 70, 371 (1999)

3.5-eV isomer of 229mTh: How it can be produced

F.F. Karpeshin, I.M. Band, and M.B. Trzhaskovskaya
Nucl. Phys. A 654, 579-596 (1999)

Optical pumping 229mTh through NEET as a new effective way of producing nuclear isomers

F.F. Karpeshin, I.M. Band, M.B. Trzhaskovskaya, and M.A. Listengarten
Phys. Lett. B 372, 1-7 (1996)

Results of a direct search using synchrotron radiation for the low-energy 229Th nuclear isomeric transition

J. Jeet, Ch. Schneider, S. T. Sullivan, W. G. Rellergert, S. Mirzadeh, A. Cassanho, H. P. Jenssen, E. V. Tkalya, and E. R. Hudson
Phys. Rev. Lett. 114, 253001 (2015)
There is a loosely connected theory paper that recaps previous work on isomer properties and constructs a “favored region” for isomer energy and lifetime.

Experimental search for the low-energy nuclear transition in Th-229 with undulator radiation

A. Yamaguchi, M. Kolbe, H. Kaser, T. Reichel, A. Gottwald, and E. Peik
New J. Phys. 17, 053053 (2015)

Nuclear Data Sheets for A = 229

E. Browne and J. K. Tuli
Nuclear Data Sheets 109, 2657 (2008)

Such data sheets, often many 100 pages long, exist for every mass number A and are updated on an unregular basis.

On the direct detection of 229mTh

Lars von der Wense
Ph.D. thesis, LMU Munich (2017)

Coherent Control of Nuclei and X-Rays

Wen-Te Liao
Ph.D. thesis, University of Heidelberg (2013)

Laser excitation of 8-eV electronic states in Th+: a first pillar of the electronic bridge toward excitation of the Th-229 nucleus

Oscar-Andrey Herrera Sancho
Ph.D. thesis, Leibniz Universität Hannover (2012)

Searching for the Decay of 229mTh

Erik Swanberg
Ph.D. thesis, University of California, Berkeley (2012)

Trapping, laser cooling, and spectroscopy of thorium IV

Corey J. Campbell
Ph.D. thesis, Georgia Institute of Technology (2011)

Experiments Towards Optical Nuclear Spectroscopy of Thorium-229

Kai Zimmermann
Ph.D. thesis, Leibniz Universität Hannover (2010)